Exam Advanced Mechanics, 9:00-12:00, Thursday, April 11, 2019
Olaf Scholten, KVI-CART
4 problems (total of 50 points).
The solution of every problem on a separate piece of paper with name and student number.
Some useful formulas are listed at the end.
Problem 1 (11 pnts in total)
Consider the eom of a damped oscillator which is driven by a time-dependent force, $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=F(t) / m$.

2 pnts

3 pnts
4 pnts

2 pnts

2 pnts

1 pnts

2 pnts

2 pnts

1 pnts
a.Give the complete expression for the Greens function $G\left(t, t^{\prime}\right)$ for the oscillator of this problem. Hint: look at the formulas at the bottom of this page.
b. Show that the Greens function solves the eom for $F(t)=0$ at all times except $t=t^{\prime}$.
c. Give the expressions for $x(t)$ in terms of a definite integral over exponents, sin, and/or cos functions for the case that

$$
F(t)= \begin{cases}0 & t<0 \\ (a / \tau) \sin \pi t / \tau & 0<t<\tau \\ 0 & t>\tau\end{cases}
$$

Pay attention to the upper and lower limits of the integral.
d. What do you expect for $x(t)$ in the limit $\tau \rightarrow 0$ and give a short explanation.

Problem 2 (9 pnts in total)
Answer: Chapter 11.10; Coin in air
A coin is thrown up in free space, rotating with an angular frequency $\vec{\omega}$ around an arbitrary axis. The momenta of inertia along its principal axes are $I_{1}=I_{2}$ and I_{3}.
a. Which one is larger, I_{1} or I_{3} ? Give a short motivation.

Answer: $I_{3}>I_{2}$
b.Give the expression for the components of the angular momentum vector, \vec{L}, in the body-fixed frame.
Answer: $\vec{L}=\left(I_{1} \omega_{1}, I_{1} \omega_{2}, I_{3} \omega_{3}\right)$
c. The equations of motion are given by $d \vec{L} / d t=\vec{N}=0$. Express this in terms of the momenta of inertia and the components of $\vec{\omega}$ along the principal axes and their time derivatives.
Answer: $d \vec{L} / d t_{\text {inert }}=d \vec{L} / d t_{B}+\vec{\omega} \times \vec{L}_{B}$
$\left(I_{1}-I_{3}\right) \omega_{2} \omega_{3}-I_{1} \dot{\omega}_{1}=0 ;\left(I_{3}-I_{1}\right) \omega_{1} \omega_{3}-I_{1} \dot{\omega_{2}}=0 ; I_{3} \dot{\omega_{3}}=0 ;$
d. Show that $\omega_{1}(t)=A \cos \beta t, \omega_{2}(t)=A \sin \beta t$, and $\omega_{3}(t)=B$, is a solution of the equations of motion and give the expression for β.
Answer: $\beta=B\left(I_{3}-I_{1}\right) / I_{1}$
e. Which vector remains fixed in the inertial system.

Answer: $\vec{L}=\left(I_{1} \omega_{1}, I_{1} \omega_{2}, I_{3} \omega_{3}\right)$

Problem 3 (15 pnts in total)
A bead slides without friction on a hoop that rotates with constant angular velocity ω about an axis perpendicular to the plane of the hoop and passing through the edge of the hoop (as shown in the figure, rotating around the z-axis while the hoop is in the $x-y$ plane). The angle θ, measures the displacement of the bead. Note that this problem ignores both friction and gravity.

4 pnts

1 pnts

2 pnts

2 pnts

2 pnts

2 pnts

2 pnts
a. Give the expression for the kinetic energy of the bead.

Answer: $\quad x=R \cos \omega t+R \cos (\omega t+\theta) ; y=R \sin \omega t+R \sin (\omega t+\theta)$
$\dot{x}=-R \omega \sin \omega t-R(\omega+\dot{\theta}) \sin (\omega t+\theta)$
$\dot{y}=R \omega \cos \omega t+R(\omega+\dot{\theta}) \cos (\omega t+\theta)$
$T * 2 / m=R^{2} \omega^{2}+R^{2}(\omega+\dot{\theta})^{2}+2 R^{2} \omega(\omega+\dot{\theta})[\sin \omega t \sin (\omega t+\theta)+\cos \omega t \cos (\omega t+\theta)]$ which
reduces to $T=m R^{2} \omega^{2} / 2+m R^{2}(\omega+\dot{\theta})^{2} / 2+m R^{2} \omega(\omega+\dot{\theta}) \cos \theta$
Grading: rekenfoutje: -1 ; geen $\theta+\omega t:-2$
b. Show that the Lagrangian can be written in terms of the variables in the figure as

$$
L=m R^{2} \omega^{2} / 2+m R^{2}(\omega+\dot{\theta})^{2} / 2+m R^{2} \omega(\omega+\dot{\theta}) \cos \theta
$$

c. Give the equation of motion of the bead.

Answer: $\ddot{\theta}+\omega^{2} \sin \theta=0$
d. Show that $\theta(t)=0$ is a solution of the EOM and determine the frequency of small oscillations around this solution.
Answer: $\ddot{\theta}+\omega^{2} \theta=0$
e. Same for the solution $\theta(t)=\pi$.

Answer: $\ddot{\theta}-\omega^{2} \theta=0$
Grading: sign: -1 pnts
f. Give the expression for the generalized momentum, p_{θ}.

Answer: $\partial L / d \dot{\theta}=m R^{2}(\omega+\dot{\theta})+m R^{2} \omega \cos \theta$
g. Determine the Hamiltonian, $H\left(\theta, p_{\theta}, t\right)$.

Answer: $H=P^{2} /\left(m R^{2}\right)-\omega P(1+\cos \theta)-m R^{2} \omega^{2} / 2-\left[\left(P^{2} /\left(2 m R^{2}\right)-P \omega \cos \theta+\omega^{2} \cos ^{2} \theta m R^{2} / 2\right]-\right.$
$\left[\omega P \cos \theta-m R^{2} \omega^{2} \cos ^{2} \theta\right]$
$H=P^{2} /\left(2 m R^{2}\right)-\omega P[1+\cos \theta]+m R^{2} \omega^{2}\left[\cos ^{2} \theta-1\right] / 2$
Grading: $\mathrm{H}=\mathrm{T}+\mathrm{V}:-1$ pnts; geen $\mathrm{P}:-1$

Problem 4 (15 pnts in total)
The action for the interaction of a particle with mass m and charge e with an electromagnetic field is given as

$$
S=-\int\left[m c^{2}+A^{\mu} u_{\mu} e / c\right](1 / \gamma) d t
$$

where $\gamma=1 / \sqrt{1-\vec{v}^{2} / c^{2}}, u^{\mu}=\frac{\partial r^{\mu}}{\partial \tau}=\gamma[c, \vec{v}]$, and $A^{\nu}(x)=[\phi(x), \vec{A}(x)]$ is the four-vector potential of the electromagnetic field.

2 pnts
1 pnts
1 pnts
2 pnts
1 pnts
2 pnts

2 pnts
4 pnts
a. Evaluate $\partial_{\mu} k x$ where $k x=k^{\mu} x_{\mu}$.
b. Evaluate $\partial^{\mu} k x$.
c. Evaluate $\partial_{\mu} e^{i k x}$.
d. Show that $u^{2}=u^{\mu} u_{\mu}=c^{2}$.
e. Evaluate $\partial^{\mu} u^{2}$.
f. Show that the Lagrangian can be written as

$$
L(\vec{x}, \vec{v} ; t)=-m c^{2} \sqrt{1-\vec{v}^{2} / c^{2}}-e \phi(x)+e \vec{A}(x) \cdot \vec{v} / c
$$

g. Calculate the generalized momentum, \vec{P}, of the particle.
h. Show that the equation of motion can be written as

$$
\frac{d}{d t} \gamma m \vec{v}=e \vec{E}+\frac{e}{c} \vec{v} \times \vec{B}
$$

Answer:

$$
\frac{d}{d t}\left(\gamma m \vec{v}+\frac{e}{c} \vec{A}\right)+e \frac{\partial \phi}{\partial \vec{x}}-\frac{e}{c} \frac{\partial \vec{A} \cdot \vec{v}}{\partial \vec{x}}=0
$$

note $\frac{d}{d t} \vec{A}=\frac{\partial \vec{A}}{\partial t}+\frac{\partial \vec{A}}{\partial x^{k}} \frac{d}{d t} x^{k} ; \quad \vec{v} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{v} \cdot \vec{A})-(\vec{v} \cdot \vec{\nabla}) \vec{A} \quad$ gives $\frac{d}{d t}(\gamma m \vec{v})=\left[-\frac{e}{c} \frac{\partial \vec{A}}{\partial t}-e \frac{\partial \phi}{\partial \vec{x}}\right]+\left[-\frac{e}{c} \frac{\partial \vec{A}}{\partial x^{k}} \frac{d}{d t} x^{k}+\frac{e}{c} \vec{v} \times \vec{B}+\frac{e}{c}(\vec{v} \cdot \vec{\nabla}) \vec{A}\right]$

Possibly useful formulas:

The response of a damped oscillator $\ddot{x}+2 \beta \dot{x}+\omega_{r}^{2} x=F(t) / m$ to a delta force at $t=0$
is $x(t)=\frac{1}{\omega_{1} m} e^{-\beta t} \sin \omega_{1} t$ for $t>0$ where $\omega_{1}=\sqrt{\omega_{r}^{2}-\beta^{2}}$.
The Inertial tensor can be written as $\{I\}=\sum_{\alpha} m_{\alpha}\left[\delta_{i j} \vec{r}_{\alpha}^{2}-\vec{r}_{\alpha, i} \vec{r}_{\alpha, j}\right]$
$\vec{F}_{B}=\vec{F}_{\text {inert }}-2 m \vec{\omega} \times \vec{v}_{B}-m \dot{\vec{\omega}} \times \vec{r}_{B}-m \vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{B}\right)$, and $\vec{v}_{\text {inert }}=\vec{v}_{B}+\vec{\omega} \times \vec{r}_{B}$
$\vec{B}=\vec{\nabla} \times \vec{A} ; \quad \vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial c t}$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta ; \quad \cos (\alpha-\beta)=\sin \alpha \sin \beta+\cos \alpha \cos \beta$
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
Integrals
For $c>0$ we have:

$$
\int e^{c x} d x=\frac{1}{c} e^{c x} ; \quad \int x e^{c x} d x=\frac{c x-1}{c^{2}} e^{c x} ; \int x^{2} e^{c x} d x=\frac{c^{2} x^{2}-2 c x+2}{c^{3}} e^{c x}
$$

